
tiD-A128 838 ON FORECAISTING WITH UNI VRRIATE AUTOREGRESSIVE /
PROCESSES: A BAYESIAN RPPRO..(U) OKLAHOMAI STATE UNIV
STILLIJATER DEPT OF STATISTICS L BROEMELING ET AL.

UNCLASSIFIED 26 JUL 82 OSU-TR-37 Ne4-82-K-e292 F/C 2/1 i

EhrommohhohhiEEhhh~h~hEND



I II~W

IIt L.'MI

L.04

MKM'urn RESgU2TOC
NIMIM MU (wsA-m-n-

'42 _.."2 1.6

MCROOPY nwwmTw a MCOCM MW~d na wfa

-ak 40 OF !;fMWM&r.*. MATO JI~ MrLIST ojjA

7.71



Sol
A

0: i

Oklahoma State University

Stillwater



TECHNCAL REPOR NO. 37
Department of Statistics ,~Oklahoma State University

,' Stillwater, Oklahoma 74078
, July 26, 1982

"D sbibudon Uubu te

;SI

0 O

.4

.',,



SgSUJl'v CLASSIPUCATIOO Of TIS 0A4E (Ph "b M

REPORT DOCUMENTATION PAGE
N.REOT NIWENI GOVY ACCaSSIO L. *ECPIENT'S CATA6OG MUMME

OSU Tech Report #37
4. nITL& (MWd&.Uq S. 7mu OF REPOT 0 ,Emoo CovEN=

On Forecasting with univariate auto- Technical
regressive processes: A Bayesian 8. s1W E. R "U"0 NU
approach.

.1. -AMTh@F) . CONTRACT ON GRANT NUIMEi.j*

'Al
Margaret Land

3. 9PRFORMMN* o0a0fATION NAMe ANo Ao**.9 'AM 19 0 TNMI . AU

Statistics Department
Oklahoma State University

"I t 1..A7! .w h u, % 1s. 49"O.T OATS
Department of the Navy "tttJ f7/-.
Office of Naval Research I& NDER O@1PAGES

ArlqK;on Vizd~:/.-- 2.217
14- WOICTOliNN A0lMCY NAME • A aOtNESfU dffeml * e..e ts 0 I. SCMurITY CLAS. (el W

Unclassified

IU& 11,50F A o OGWW IA 0It 0

Is. ST0 1T ON STATEMENT (et dde eil

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

IT. OeS"rmEUTION STATEMENT (f Me S ewaI w od ft Week 20. It dilmeal 1k Rhee

W. SUPPLEMiENTANY NOTES

St. KEy WONRS (Cibu. la mon roW@ 00 mit W 141 a d"W "me*& 'k)

Bayesian Inference; predictive distribution; autoregressive
process; future observations, forecasting; normal-gamma prior
density.

At. A"TRACT ( "e mm aide it meef, ad ,Me AV Nok rer)

Using a normal-gamma prior density for the parameters of a p-th
*order autoregressive process, the Bayesian predictive density

of k future observations is derived. It is shown that the
joint predictive density of k future observations is the producl
of k univariate t densities. Our results are illustrated with
one step-ahead forecasts of an AR(l) model.

D47 0E102- L" 014- 6601 Unclassified
0SECURITY CLASSIFICATION OF T"18 PAGE U D. L .



ON FORECASTING WITH UNIVARIATE
AUTOREGRESSIVE PROCESSES:

A BAYESIAN APPROACH

LYLE. BROEMELING
Oklahoma State University, Stillwater, Oklahoma 74074, U.S.A.

MARGARET LAND
Texas A and I University, Kingsville, Texas, 78363, U.S.A.

Using a normal-gama prior density for the parameters of a

p-th order autoregressive process, the Bayesian predictive

-: density of k future observations is derived. It is shown that

the joint predic tive density of k future observations ay be

, expressed as the product of k univariate t densities. Our

results are illustrated with one-step ahead forecasts employing

an AR(l) model with a conjugate prior density for the parameters.
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1. Introduction

Consider a p-th order autoregressive model

p
Y(t) - E8 OY(t-J) + E(t) , (1)

where t = 1,2,...,n, ejCR, Y(t) is the observation at time t, and

(1), e(2),...,e(n) are n.i.d. (O,T), T > 0. The parameters

l_, .... , and r are unknown and the 'initial' observations

Y(O),Y(-l),...,y(l-p), are assumed to be known constants.

Given a sample S M [Y(l),...,Y(n) ]'of observations, how

does one forecast future observations W(j) - Y(n+j), where

j - 1,2,...,k , and k is an Integer such that k > 1? Of course

there are many non-Bayesian techniques of forecasting in the

literature including Box and Jenkins, exponential smoothing, and

stepwise autoregression, all of which are explained in Granger

and Newbold (1977). In addition, Bayesian techniques of forecast-

ing have been developed by Harrison and Stevens (1976), Zellner

(1971) and Chow (1975), who base their forecasts on the Bayesian

predictive distribution of the future observations.

The Bayesian predictive distribution is the conditional

distribution of the future observations U - [W(-),,..,W(k)]'
k

given the past observations S and plays a prominent role in
n

Bayesian methodology. Aitchison and Dunsmore (1975) develop the

Bayesian predictive density for many of the traditional statisti-

cal models, but curiously, it has not often been used in time

series analysis, except by Zallner and Chow, where the former au-

thor uses it with first and second order autoregressive processes

,." ', " " ; "".. .. " ' " ... .. . ' " . - . - " .- . ". . . . . -



for K - 1 (one-step ahead prediction), and Chow derives the

predictive moments for the general case.

The purpose of this study is to characterize the predictive

distribution of Wk given S n . It will be shown that when k - 1.

The predictive distribution of W1 is a univariate t and that when

k - 2, the conditional predictive distribution of W(2) given W(l)

is a univariate t and that the marginal predictive distribution

of W(l) is also a t . In general, assuming a normal-gama

" conjugate prior density for the parameters, the predictive density

of Wk is a product of univariate t densities.

Rpm -This study is concluded with a numerial demonstration of

one-step ahead forecasting with a first order autoregressive

model. Using a normal-gma prior density for the two parmters

of the model, the mean and variance of the predictive distribution

", of W(l) - Y(n + 1) Is computed for a wide variety of models,

sample sizes, and values of the prior mean of the autoregressive

parameter.

.. 2. The Prior and Posterior Analyses

Using the Bayesian approach, one must specify a prior density

for 0 - (91,e2 ...,ep)'and T, and it often is convenient to use
2""p

either a Jeffrey*' Improper priorK (e,T) - 1T, T > 0, eCRp  (2)

or the normal-gama conjugate prior density

(8,) " 21(/T) 22 (), T > 0, ecRp , (3)

where the conditional prior density of 0 given T is

-T 4 . *.* .4 *** .. - .4 4-.. . . . . . . . . ... . . . . .-. ... 4' ;- " . 4, " .'. . .- -' 4 . . 4 -- 4 • -, . *4- .... . . . ..-- -.. . - .. .,,-. . .. , ..- - , ' -



':.," T*.* - .. -.- . -

" /z T ---- o-u) ip (o-u)
921e/T) cc .6 (4)

and

,T22 , ( ) cc , .1 o (5)

is the marginal prior density of T.

Thus, apriori, e given T has a normal distribution with mean

vector )j and precision matrix T I, where I is a symmtric posi-

tive definite matrix, and T has a gamma distribution with para-

meters a > 0 and 8 > 0. This Implies the marginal prior density

of e is

93 (e) [2 + (0-u) ? '(-I) "(1+ 201) /2, OCRp  (6)

which is a t density with 2a degrees of freedom, location I, and

precision matrix (20) P(2B)- "  Note, the parameters of the

marginal prior distribution of T are also parameters of the

marginal prior density of e, hence one's prior Information about

e depends on one's prior opinion of T.

The prior density C2 of the parameters e and T is combined

with the conditional density of the observations Sn given e and T,

which is

..S /8T E [¥(t)- E 8.Y(t-J)) $SnelR (7)

t- J-1

the product is the posterior density of e and T, nmely,

ccp .{28 + (e-i)'F(e-.) +

E [Y W 46Y(t-J)] 2I

too[l ) -



3. The Bayesian Predictive Distribution

The Bayesian predictive density of Wk(conditional on 8 ) is

gSWk/Sn)- (e,T/sn)f(Wk/Sne,T)dedt, WkORk (9)

where 12 - {(e,T):eeRP,T.> 0} and f(W/S, e,r) is the conditional

density of the k future observations Wk given Sn' e, and T. It is

seen that the Bayesian predictive density of Wis the average
"-1

* . (with respect to the posterior distribution of the parameters) of

the conditional predictive density of Wk given 6 and T.

The integrand of (9) is proportional to

92 (8,T)f(Sn/,T)f(Wk/Sn, e,), thus the predictive density of Wk

is the average (with respect to the prior distributio* of the

distribution of S and Wk given e and *, which has density,
np k p 2

f(SC zW I8[~ip4Ey(t)_ Ee 0y(t-j)J 2+ Ej[W(s)_J e W(sJ)12

(10)

where 8nCn, n Ik, and W(-i) - Y(n-i), i - 0,1,2,...,,

The joint distribution of S e,

. f(S, WkOr) - f(S ,Wk/T)42(0,),SnCRn,WkcRkOeRPT > 0,
' " (11)n

thus

f(S ,) f fS WkO,)dedTS WR k (12)

is the joint density of the past and future observations, and the

Bayesian predictive distribution of Wk will be identified from

* *.* this density, because
k

l(k mn f(S lWk). We R (13)

i S*-. . . . . . .



it can be shown that if K > 1,

:4 g(wk/sn) - gl(wk_,Sn)8 2 (wkS)w eR, (14)

where

1 *(wk_,,s ) J1 1/2 W - , (15)
- +2~k/2, k '

S82 (wk. s) ac[c-aPAl3 ( -(1O+) (16),

and W does not depend on W(1),W(2), etc.
0

The other quantities are

A a A + A2 +1, (17)
- + B2 + , (18)

and

C E y(t) + E" (s) + 2+0 JAP (19)

t-l i'i

Where A1 and A2 are the pxp matrices
n

A, - Z Y(t-j)Y(t-1)], £ < j < I < P (20)

t-1
and

k
A = ( Z W(s-J)W(s-Z)3, 1 < j:< 2 < p • (21)
2 u-i P

The pil vectors 1 and B2 are given by

n
. i  Z Y(t)Y(t-J)], 1 <j< p (22)

tw1
and

k
B2 - [ Z W(s)W(-), 1 < j < p • (23)

Consider equations (14),(15), and (16), then if k = 1, g I

depends on W(3), via A, but not W(2), and 82 depends on both W(1)

and W(2). When k - 3, 92 depends on W3 - [W(l),W(2),W(3)J and

$1 only on W(1) and W(2). In general if k> 2, g2 depends on Wk

-4
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and the conditional distribution of W(2) given W(l) :L3

given by (16) with k - 2, which is a t density with

*., u+2cdegrees of freedom, location

E[W(2)/w(),s n  - 2." (26)

and precision.

P[W(2)/W(l),Sn] - (,2c)D (27)

-.where, 2

D 2  1 -G_ 1 A- G 1_

2" _-1 AL-BA1+P1 + W(1)Go 0

2 C - W2(2) - [B+1PU1W(1)G -YA [B 1+ +W()G]

and

S- [w(l-),w(-2),...,W(2-p) 1"

(c) If K - 3, the predictive distribution of Wi3  s such that

the marginal distribution of W(1) is given by (a), the

conditional distribution of W(2) given W(1) is given

above by (b), and the conditional density of W(3) given

W(l) and W(2) is the t-density (16) with K - 3, with

n+2c degrees of freedom location

, E[W(3)/W(),W(2),S] - D3lE, (28)

-' . and precision
:'" (n+2t) D3

P[W(3)/W(1),W(2),S ] ,DZ (29)

where

D 3  1 - ,2A

.3 (;2A-l[Be W(1)G W(2)G

73 - C - W2(3) - [3.+ PW (1)0+W(2)._]-'[Bi+ P.+w(.)G+ +W(2)G 1
and

. 0 2 - W(-2),...,W(3-p)]V.

- ** . * ., * *.-. *. * . . . . . . .



(d) In general if K > 2, the conditional predictive distri-

bution of W(k) given Wk_ , [W(l),W(2),...,W(k-l)]" is t

with n+2a degrees of freedom, location.

E[W(k)/WkISn) - -1 (30).
_,Su -Dk Ek(3)

and precision
(.+ 2()Dk (31)

where

Dk = 1. G" .(k-1.) A-IG (k-1.),

D m1~Gk--

Fk - G + Z W(Jk)G_(l)],-i-I
k-i l.-

F k C-W2(k)-CB 1 +P ]?+k W(i)G (jl) IA- [B1+ P+ kE 1VJG( 1
kj-i J-1.

where for i - 0,1,2,...

-- i),W(-i-),...W(L+l-p) ).

Thus it is seen that the predictive density of Wk maybe

expressed as the product of k univariate t densities, namely the

marginal density of W(l), given by (a). the conditional predictive

density of W(2) given W(), given above by (b), and so on; however,
,"

the predictive density of Wk is not the standard k-variate multi-

variate t density as defined by DeGroot (1970), Press (1972), and

Zellner (1971).

"'4 What is the predictive distribution of W f one uses

iJeffreys' prior density 41, (2), in lieu of the conjugate prior

density F 2, (3),? Fortunately, one my revise the previous

theorem and thereby produce the predictive distribution.

THOI{ , 2

If{Y(t): t 091,t,2,...) is an AR(p) process with unknown



parameters 8eO and T > O, Sn a sample of u observations, n > p,

y(O),Y(-),...,Y(l-p) known real constants, and if the prior

density of 0 and T is 4(l), (2), the predictive distribution of

SWk is given by Theorem 1 by letting P - 0(pxp),a 0-p/2, and

1 j 0 in equations (24) through (31).

In particular, consider a first order model, p - 1, with

Jeffreys' prior density and a one-step ahead forecast, k - 1,

then what is the predictive density of W(l)? According to

Theorem 2, part (a) of Theorem 1 gives the solution with (z -P- ,

B *0, and P > 0 substituted into equations (24) and (25).

This gives a t distribution for W(l) with n-i degrees of freedom,

location a
Y(n) Y(t)Y(t-i)

E(w()/s n n-i0 (3)

5y (t)

and precision -1 2
. (n-i) E Y (t)

P w(l) /S n n n n n n-i
[Y2 (t)[Y (t)]-[EY(t)Y(t-1)] [E (t)] E Y 2(t)]-
1 0 1 0 0

(33)

Using the vague prior, the mean of the predictive distribution

of W(l) is

Y(n+l) - eY(n)

where the posterior mean of 0
A n n-1 2

e - (t)Y(t-l)/ E Y (t) , (34)
0 0

is an estimate of 0, the autoregressive parameter, which when

619 is the autocorrlat ion between successive observations.

" ,; : , :: ' ,' ...... " -. t.,.. . ,- .,. .- ,: . , - . - . . .-. , .. .. -. . . . - .~- - -



A straightforward way to predict Y(n+l) is to note

Y(n+) - eY(n) + e(n+l)

thus KY(nz+l) - Y(n), where the average E is taken with respect

to e(n+l) given Y(n), then EY(n+i) is estimated by 0 Y(n), where

e* is some estimate of 8, say the mean , (34), of the posterior

distribution of 6. Hence the Bayesian way of point forecasting

with the predictive mean conforms to the usual way one would

attempt to solve the problem.

If one would want to forecast W(l), one could use an interval

prediction based on the predictive distribution of W(l), uch Is

t with n-1 degrees of freedom, location given by (32) and pre-

cision-given by (33). The predictive variance of W(l) is

Var [W(1)jXJ (n-l) (n-3)-('3[W() (4)

thus

S[w(l)/S + t VvIM nIS 1 (35)
n <2<,n- o n

is a 1-y, 0 < y < 1, prediction interval of Y(n+l) and Is easily

o computed with the aid of student's t tables. The intervals have

the HID (highest posterior density) property explained by Box

and Tiao (1965).

Land (1981) gives some examples of one and two-step ahead

forecasting, via Theorem 2, with an AR(l) process and Jeffreys'

prior distribution.

4. A Numerical Study

In this section of the stuY, an AR(l) model

Y(t) - *Y(t-1) + C(t) , t - 1,2,...,n (36)

Is considered, where Y(t) is the observation at time t, Y(O) is a



known constant, *eR is the unknown autoregressive parameter

and the c(t), t 1 l,2,...,n are n.i.d. (O,T), where T > 0 is

unknown. Suppose the prior density for 0 and T is

T -I B

F CToT# T > 0 , (37)

which is a normal-gsma density with parameters UCR, P > 0, a and

B> 0. The marginal prior density of *T is gam with paamters

a > 0 and B > 0 and the marginal prior density of # is

: ( - ) (6 2 ]-(l+2m)/2, 1 (-C, (O) (2[0 + (6u P R(8)

thus apriori1, * has a t distribution with 2M degrees of freedom,

location Ui, precision (2h) P(20) - 1 and variance B-(a-l) 1  , when

a>l.
Suppose one believes that the process is 'almost' stationary,

the one would want 'most' of the marginal prior probability

distribution of # to be concentrated over (-1,+1). For ezaMple,

suppose one wants #(-1,l) with a preassigned probability of l-Y,

where 0 < y < 1, then, aswmin a, 0, and u are fixed, one would

choose P such that
' I~~t2/2 (1l -2 (a1 - 1 ,

-tu - I i C , > 1, (39)

where t is the upper 1O0(y/2)Z point of the t-distribution
Y/2,2a

with 2a. degrees of freedom. Hence a and B are chosen to express

the prior opinion of T, u Is chosen as one initial guess of the

value of #, and then P is determined from (39).

In this way, one may express one's prior opinion of an almost

(y close to 1) stationary hk(l) process (36).

Now, suppose we want to forecast a future observation Y (n + 1)



'-7

based on a smple 8 when the observations were generated from an

AR(l) process, which is almost stationary. Clearly, part (A) of

theorem 1 applies and the following tables were computed using

formulas (24) and (25) of that theorem.

Using the norml-gma prior (37) for* and T, Samples S n,

where n(in 25,50,100,750), were gmnrited with* 0.0,.50,.75, and

.90, T - 1, and Y(0) -0. The paraeters of the prior distribu-

tion were a 10, 0 a - 1, Ui 0.0,0.25,0.5,0.75, and 0.90, and

I was detemuned from (39) with y -. 05, that is, 95Z of the

marginal prior distribution of* #Is concentrated over (-1,1), with

a prior mean of ji and a prior variance of I-

Consider Table 2, where ample Sn n -25,50,100,750 was

generated from the ARMl model Y(t) -. 25Y(t-l) + e(t), with

Y(0) -0 and £(t) -n(0,l). The parameters of the prior distribu-

tion were chosen as 0- 10, 0-' 9, UA 0,.25,.5%~.75,.9 ,which

determined Ifrom (39) with Y - .05 . The"e tables consist of

three parts, namely the prior, posterior, and predictive informa-

tion, thus the first row correspoDs to n - 25, ii - 0, IP1- .2298,

1(r)- -1.111 ,var'r) ~,2 -. 1235, the marginal posterior

as of # io .3004, the arginal variance of # is .0299, the mean

of the predictive distribution of Y(n+l) Is .4189, which is

* - calculated from (24) and the predictive variance of Y(n+l) is

1.2954, which was computed from (25). Each table corresponds to

a particular A1(1) model and are as follows.



TABLE 1

AR(1),YtntCi.i.d V(O,),yoONG prior cv"1O,S-9

PriorlatemPredictive

3() ($) Itt) V(r) 20/15 V(OIsl Itt/S) vTI/S1 E(V.4) V(Th1)

IL 1... 1.11 1 .123 1.1620 .02 Ss54 .0225 127233

*.00 -2 ..L. 12298 ,111 -1235 JU AM3 MU~k iI& -.273 L.0

- 790L"'" .0012 lL'01~ L.OD iL l JL-

2L -25 - ML A.= UI uL AL =I-L AMSL =U- A u IL

0.25 -.U .2L sW.LLL .S U U.flL k .ULL.1-

j L fL U _2LU .154 MU m MAO .2271 1-02

2% AL. JULZA UM il -A A220-.i

0.50 .. ii..*" L .123L hL haL UL 2M fL._ ..ALU_ LA

43s .j. .27 A .122 lLtau- muL JuL Oug u- .M

-L.J JWI- la= .4233- 4663- A:M J=L 61= WL '82L

75 9 .0023 1.111 .1235 3617 .0011 1.60S 10017 17318 1.2,74

01



TABLE 2

ARM1) Yt.5 C c-~ N(Ol1),y WO, N-G. prior cvm1O, 0-n9

t-1 t t

ftedtctlve

3(0) V(s) 3(T) V(T) 90/51, VcIS) IO V(Ts) E(T*+I) V(ym4.2)

f .2298 .111.235 .001 .904.03 . I

2L -25 1-111 J-L .320 .0275 1-=051~

2L -3 AUSL _U"_ 1.I 27_8"t6JZ Jl

0.3 -1 051 111 .33 -411 .0L .a 112 JIM jai" az.IU L

- S .5-u-L -'LL ZIAL -A2A -027 .943 1,146

Ile 0.73..J .75L .0144 1,1111 .122L -422 .nla.. -27& JUIl-L WI.. L-hZI.

0.75 .4. ..52 .0144M 1'111 .121L _13 .LhL.fai..flL'.*

291.4 -6 li U1 JilL 19- A1 lei UL

- 750 .9 .0023 1.111J .1235 1.5002 .0009 .89* 021 3*51 .1En49f



TABLE 3

AR(l),ytm.5y .. +CtCti~i.d N(O.1),y -0, N-G prior CL-1O, 0-9

~. a Prior 1.1. Uftl 21i rier aI& Lt . JMau".

SO*) Y(s) t(t) 1(t g(O/S V(s*I &(,t/s) V(l/5) C(1.4) V(Tm41)

25 0 .2298 I..1U) .1235- U454 .0254 8316 .0301 .7WS 1.3259

so J U 1,1_12 35 .38L M .0'12 .092 .028 .73 .1

-A-1 -ML 2l *" J2LL =a- Am_ LM Jm- A= A7

JL .1 291 -&AOL.~ 21 ~m~z i3

0.25 &... .L J2. '.ULW alLL %UL PAUL- AMA AL a121" .LIL

1 AL JMS- 1U -iLL AhZ MIL- L- =L &ua- LIM

* j .0575 1.111 .1235 .393 .10 h A M .0L 236. -.25 1L6

~U ~ ilL W ~fL I2 .0L MW .0163 .32L 1,02"

-JL-JLjil -014 111.123mL ML _u= 1 20

0.75 ..L..01 4W 1,1W 4.12 23 LAn-l. .1123. QZL .MM I.JJM

-UA 60M I.ZLi DUL- A=- -MMZ-~N

2L .. I1L-N2L 4 6Z3L ~fi3L JL MIL

090 ..J... .N2. L.LLI LZI. .112 302 . J14 D.03 "982 1..122

70 .9 902 .111.1235 6345 .0007 -. 933 .0024 .9790 1.0403-



TABLE 4

AR1,t.5t~+tC~~~ N(O,1),y MO, N-G prior m-10, 0-m9

(0) TO*) NOi V(T) 3(#/3 (/ (I)V:i)(.1 (h1

0L -22W I-IU1 .1235 .7231 GIG$ .3119 .0M 1.6201 1.2742

-0.0 2 2I- - Jk -MI ML

- ?%a 21 -1" -12. J _1.= A=L JA J2U

-UL -AL0 -A= "'A& 4-M" LML JUL'.

30 JL .0575 JJW AUUL ML -am _ML .022 JuL 74W

.- ~~~01 IU '"113 5iZ

0.bo ZML -Ou -,20L -6212 J,=Lm aa 4 a .n. .jjU
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What can be concluded from this numerical study? First, one sees

the influence of the sample size n and the prior mean p on the

posterior mean and variance and the predictive mean and variance

of Y(n+l). They show the anticipated reduction in the posterior

variance of and the predictive variance of the future observation

as the sample size increases. As the prior mean of * increases

toward one, for the same AR(l) series (same value of ), and the

same value of n, series length, the posterior variance of *
decreases, becduse as U increases to one, IP, the prior variance

of * decreases, as can be verified from (39). Of course, this

should happen since, as the prior variance of * becomes smaller,
so should the posterior variance of *.

Also the tables show, that for the same value of U and n,

the posterior variance of * decreases as the true value of
increases from 0 to .90 Of course, this is anticipated from the

theory of time series, because the usual estimator of has a

large-sample variance of n-l(l _f 2), see Box and Jenkins (1970).

Results for the predictive density show that its mean is

highly influenced by the value of the last observation Y(n) and

its variance by the sample size, the variance decreasing as the

sample size increases.

:Given a particular AR(l) model, say that given by Table 4,

*one would expect the predictive variance to be the smallest when

- .75 and n - 750 and this is indeed the case. The sm holds

for the other four tables. For example with Table 1, (when the

'true' value of * - 0), the predictive variance is smallest when

.4
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- 0 and n = 750, which is the largest sample size.

Predictive intervals for one-step ahead forecasts are

relatively easy to find. Suppose the AR(l) model with * - .5

'C, (Table 3) is used to generate 25 observations and one's prior

belief is based on P - .75, a - 10, B - 9, and the P value given

5.} by (39), i.e., one is assuming the process is stationary with a

prior probability of 95Z. A 90Z prediction interval for Y(26) is

1.0821 - 1.2917 t.05,65, which is (-0.817,2.9812), and this

follows from part a of Theorem 1.

5. Cosments and Conclusions

It has been shown that if an AR(p) is an adequate model for

a time series and if prior information is expressed as either a

* conjugate prior density or a Jeffreys' vague improper density, the

predictive distribution of k future observations is characterized

by the product of k univariate t densities. Theorem 1 and 2 give

the particular details of the predictive distribution.

These theorems provide one with a way to make point and

interval forecasts of future observations. For example, the mean

of the predictive distribution gives a point forecast, and the

mean together with the variance of the predictive distribution

allows one to construct interval forecasts. The theorems also

give a way to make one-step, two-step, and other poly-step

predictions.

The numerical study illustrates the sensitivity of the

posterior and predictive mean and variance to the sample size and

prior mean of the autoregressive parameter of five AR(l) models.

- r - ,.. . . ......................
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The calculations reveal that the variance of the one-step ahead

forecasts is a minimum for the largest sample size and when the

prior mean of the autoregressive parameter coincides with the

'true' value of that parameter. The prior distribution of the

parameters of the AR(l) models were chosen to express near

stationarity of the process.

It would be interesting to develop the predictive distribu-

tion of vector autoregressive processes. One would expect the

forecasting distribution to be characterized by the product of

multivariate t densities.
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